Learn R Programming

RandomFields (version 3.0.35)

Obsolete Functions: Obsolete functions

Description

This part gives the obsolete functions of RandomFields Version 2

Usage

Covariance(x, y = NULL, model, param = NULL, dim = if
 (!missing(Distances)) { if (is.matrix(x)) ncol(x) else 1},
 Distances, fctcall = c("Cov", "Variogram", "CovMatrix"))
CovarianceFct(x, y = NULL, model, param = NULL, dim = if
 (!missing(Distances)) { if (is.matrix(x)) ncol(x) else 1},
 Distances, fctcall = c("Cov", "Variogram", "CovMatrix"))
CovMatrix(x, y = NULL, model, param = NULL, dim = if
 (!missing(Distances)) { if (is.matrix(x)) ncol(x) else 1}, Distances)
DeleteAllRegisters()
DeleteRegister(nr=0)
DoSimulateRF(n = 1, register = 0, paired=FALSE, trend=NULL) 
InitSimulateRF(x, y = NULL, z = NULL, T=NULL, grid=!missing(gridtriple),
 model, param, trend, method = NULL, register = 0,
 gridtriple, distribution=NA)
InitGaussRF(x, y = NULL, z = NULL, T=NULL, grid=!missing(gridtriple),
 model, param, trend=NULL, method = NULL, register = 0, gridtriple) 
GaussRF(x, y = NULL, z = NULL, T=NULL, grid=!missing(gridtriple), model,
 param, trend=NULL, method = NULL, n = 1, register = 0, gridtriple,
 paired=FALSE, PrintLevel=1, Storing=TRUE, ...) 
Variogram(x, model, param = NULL, dim = if (!missing(Distances))
 { if (is.matrix(x)) ncol(x) else 1}, Distances)
InitMaxStableRF(x, y = NULL, z = NULL, grid, model, param, maxstable,
 method = NULL, register = 0, gridtriple = FALSE)
MaxStableRF(x, y = NULL, z = NULL, grid, model, param, maxstable,
 method = NULL, n = 1, register = 0, gridtriple = FALSE, ...)
EmpiricalVariogram(x, y = NULL, z = NULL, T=NULL, data, grid, bin,
 gridtriple = FALSE, phi, theta, deltaT)
Kriging(krige.method, x, y=NULL, z=NULL, T=NULL, grid, gridtriple=FALSE,
 model, param, given, data, trend=NULL,pch=".", return.variance=FALSE,
 allowdistanceZero = FALSE, cholesky=FALSE) 
CondSimu(krige.method, x, y=NULL, z=NULL, T=NULL, grid, gridtriple=FALSE,
 model, param, method=NULL, given, data, trend=NULL, n=1, register=0, 
 err.model=NULL, err.param=NULL, err.method=NULL, err.register=1, 
 tol=1E-5, pch=".", paired=FALSE, na.rm=FALSE) 
RFparameters(...)
hurst(x, y = NULL, z = NULL, data, gridtriple = FALSE, sort=TRUE,
 block.sequ = unique(round(exp(seq(log(min(3000, dim[1] / 5)),
 log(dim[1]), len=min(100, dim[1]))))),
 fft.m = c(1, min(1000, (fft.len - 1) / 10)),
 fft.max.length = Inf, 
 method=c("dfa", "fft", "var"), mode=c("plot", "interactive"),
 pch=16, cex=0.2, cex.main=0.85,
 PrintLevel=RFoptions()$general$printlevel,height=3.5, ...)
fractal.dim(x, y = NULL, z = NULL, data, grid=TRUE, gridtriple = FALSE,
 bin, vario.n=5, sort=TRUE, fft.m = c(65, 86), fft.max.length=Inf,
 fft.max.regr=150000, fft.shift = 50, method=c("variogram", "fft"),
 mode=c("plot", "interactive"), pch=16, cex=0.2, cex.main=0.85,
 PrintLevel = RFoptions()$general$printlevel, height=3.5, ...)
fitvario(x, y=NULL, z=NULL, T=NULL, data, model, param, lower=NULL,
 upper=NULL, sill=NA, grid=!missing(gridtriple), gridtriple=FALSE, ...)

Arguments

x, y, model, param, dim, Distances, fctcall, n, register, paired, trend, z, T, grid, method, gridtriple, distribution, PrintLevel, Storing, ..., maxstable, data, bin, phi, theta, deltaT, krige.method, pch, return.variance, allowdistanceZero, cholesky
as the functions are obsolete, all these arguments are not documented anymore.

Value

  • not given anymore.

See Also

The functions that should be used instead are, for instance, RFcov, RFcovmatrix, RFvariogram, RFsimulate, RFinterpolate, RFempiricalvariogram, RFfit, RFoptions, RFhurst, RFfractaldim

Examples

Run this code
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

## no examples given, as command is obsolete
\dontrun{

x <- seq(0, 5, if (interactive()) 0.05 else 2)
model <- "exp"
param <- c(0, 1, 0, 1)

plot(x, Covariance(x, model=model, param=param))
plot(x, Variogram(x, model=model, param=param))

z <- GaussRF(x, model=model, param=param)
plot(x, z, type="l")

z <- GaussRF(x=x, y=x, model=model, param=param, grid=TRUE)
image(x, x, z)
EmpiricalVariogram(x, x, data=z)

g1 <- runif(5) * 2
g2 <- runif(5) * 2
z <- GaussRF(g1, g2, grid=FALSE, model=model, param=param)
k <- Kriging("S", x, x, given=cbind(g1, g2),
        data=z, model=model, param=param)
Print(range(z), range(k))
col <- rainbow(20)
zlim <- range(z, k)
image(x, x, k, col=col, zlim=zlim)
points(g1, g2, pch=20,cex=2)
points(g1, g2, pch=16, col=col[pmax(1, (z-zlim[1]) / diff(zlim) * 20 )])
#
estparam <- rep(NA, 4)
v <- fitvario(x=g1, y=g2, grid=FALSE, model=model, param=estparam, data=z)
Print(v$ml, v$ml$ml.value)
}
FinalizeExample()

Run the code above in your browser using DataLab